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This paper gives the answer to a problem of Rivlin in L I approximation in the
case when n = 2.

I. INTRODUCTION

In a conference held in Oberwolfach in 1968, Rivlin [11 proposed the
following problem:

Characterize those n-tuples of algebraic polynomials {po'Pl'...,Pn-.l with
degrees satisfying

degpj=j . (j = 0, 1,..., n - 1),

for which there exists an IE C[-1, 1] such that the polynomial of best
uniform approximation of degree j to I is Pj (j =0, 1,..., n - 1). What is the
characterization in the particular case when n = 2?

Several authors [2-9] have studied this problem. In this paper we consider
the above problem in C[-1, 1] with the L I norm:

11/11 = r I/(x)1 dx,
-I

and give the answer in the particular case when n = 2. That is the following:

THEOREM. Let Pj be the set 01 polynomials 01 degree ~ (j = 0, 1), and
PjEPj (j=0, 1). Then there exists an/E C[-I, 1] such that Pj is a best
approximation to Ilrom Pij = 0, 1) if and only if the polynomial P =PI - Po
changes sign once in [-1, 1] or is identically equal to zero.
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Before proving the theorem we introduce some notation.

Z+(h)= {xE [-1,1]: hex) >Of,

Z_(h) = {x E [-1, 1]: hex) < Of,

Z(h) = {xE [-1, l]:h(x)=O},

m(E) = the Lebesgue measure of the set E.

II. PROOF OF THE THEOREM

We can suppose without loss of generality that Po = O.
Necessity. Assume that there exists anfE C[-I, 1] such thatPj is a best

approximation to f from Pj (j = 0, 1), where Po = 0 and PI = P, but the
condition of the theorem is not satisfied, i.e., P '* 0 and does not change sign
in [-1,1], say p~O on [-1,1].

By Theorem 4.2 in [10] we have

If I sgnf(x)dx I~ t(f) dx,

If I sgn(f(x) - p(x» dx I~ tr-p) dx,

i.e.,

Im(Z+(f» - m(Z_(f»1 ~ m(Z(f),

Im(Z+(f - p» - m(Z_(f- p»1 ~ m(Z(f- p».

Hence,

m(Z+(f» - m(Z_(f» - m(Z(f» ~ 0, (1)

m(Z+(f- p» - m(Z_(f- p» +m(Z(f- p» ~ O. (2)

On the other hand since

Z _(f) U Z (f) c Z _(f - p) + e

and

where e = {-I, I},

m(Z_(f» +m(Z(f» ~ m(Z_(f- p»,

(3)
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and

whence

m(Z+(f- p)) - m(Z_(f- p)) +m(Z(f- p))

~ m(Z+(I)) - m(Z_(f)) - m(Z(f)).

But from (1), (2) and (4) it follows that

m(Z+(f- p)) - m(Z_(f- p)) +m(Z(f- p))

= (Z+(I)) - m(Z_(f)) - m(Z(f)) = 0,

so

m(Z(f)) +m(Z_(f)) = m(Z+(f)) = 1,

m(Z(f- p)) +m(Z+(f- p)) = m(Z_(f- p)) = 1.

Thus,

m(Z(f- p)) + m(Z+(f- p)) = m(Z+(1)).

From (3) and (5) we obtain

a contradiction, because the set

Z+(f)\(Z(f - p) U Z+(f - p)) = Z+(f) nZ_(f- p)

= {xE [-1, 11:0 <f(x) <p(x)}
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(4 )

(5)

is nonempty. In fact, if f ~ 0 (orf~ p), p (or 0) could not be a best approx
imation to f from PI (or Po).

Sufficiency. Assume now that p = ax +b changes sign once in [-1, 11,
because the theorem is obviously valid for p = O. Then a =I=- 0 and
1= -b/a E (-1,1). We discuss three cases.

Case 1. I < O. Set

u = min{/, -~},

X o = -1,

v = max{/, -~},

x1=U-W,

W = ~ min{1 + 1, -I};

x 3 = V + W,
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f(x) = 0,

=p(xz),

=0,

=p(xs)'

= 2p(x6 ),

x=XZ

x=xs

linear for the other x.

Firstly, since m(Z(f» = (XI - x o) + (x4 - x 3) = 3/2 + u - v - 3w > 1, by
Theorem 4.2 in [10], 0 is a best approximation to f from Po.

Secondly, it is easy to see by simple calculation that

sgn(f(x) - p(x» = sgn a,

=0,

= -sgn a,

=0,

= sgna,

We have

sgn(f(x) - p(x» = sgn a,

= -sgn a,

Thus, for any q E PI

rq(x) sgn(f(x) - p(x» dx
-I

X=X Z

x=xs

Ixl > ~

Ixl <~.

(

-I/Z I/Z I )
= (sgn a) f q(x) dx - f q(x) dx +f q(x) dx = 0,

-I - I/Z I/Z

and p is a best approximation to f from PI'

Case 2. t = O.

f = p has best approximations 0 and p from Po and PI' respectively.

Case 3. t > O.

Consider p*(x) =p(-x). Then t* = -t < O. According to Case 1 above,
there exists an f * with 0 and p * as its best approximations from Po and PI'
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respectively. Hence f(x) =-f*(-x) has best approximations 0 and
p(x) =-p*(-x).
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